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This paper investigates the stability and tracking performance of discrete-time chaotic systems in the presence of external 
disturbance and noise. For this purpose, a neural network control scheme is developed on the basis of a novel adaptive 
learning rate to stabilize the chaotic motion of discrete-time chaotic systems to a fixed point as well as to track the desired 
reference trajectory. The effectiveness of the proposed method is investigated through simulation studies on 2 dimensional 
Lozi map and performance comparison has been made with well-known backstepping control strategy. 
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1. Introduction 
 

Controlling chaos via different control schemes has 

received great interest in recent years after first introduced 

by [1]. In OGY–like methods [2-5], when the chaotic 

trajectory enters a small neighborhood of the 

corresponding fixed point, a small perturbation is applied 

to some parameter of the system to keep the chaotic 

trajectory in the vicinity of the target periodic orbit. 

However, it is not always an easy task to find a suitable 

control parameter in the system and a priori knowledge of 

the unstable periodic orbits is required to apply the control 

algorithm. Furthermore, these methods are highly sensitive 

to noise [6]. 

The control problem of chaotic systems with 

uncertainty and disturbance has been studied by 

researchers using different robust control techniques. In 

[7], a sliding mode controller has been designed to 

stabilize the unstable periodic orbits of 2 dimensional 

Hénon map with external disturbances. Sliding mode 

controllers have been also used to regulate the chaotic 

systems to their equilibrium state [8-9]. In [10], a fuzzy 

model based design has been developed for trajectory 

tracking control of chaotic systems. However, fuzzy 

models are generally intuitive and require well tuned 

control parameters.  

Backstepping is one of the most promising Lyapunov 

based adaptive robust control techniques, that has been 

used for stabilization and tracking control of continuous 

time [11-13] and discrete time [14] chaotic systems as well 

as of nonlinear chaotic systems with bounded uncertainties 

and external disturbances [15-16]. Lynapunov based 

control techniques has been also applied to 

synchronization of master-slave Lorenz systems with 

parameter mismatch [17] and hyperchaotic Yang system 

with unknown parameters [18]. 

Recently, neural network (NN) based control 

algorithms have attracted great interest in control and 

synchronization of chaotic systems because of their ability 

to deal with uncertainty and noise. In [19], a NN based 

algorithm has been utilized to stabilize the chaotic motion 

in chaotic Hénon map to a desired target trajectory.  In 

[20], the chaotic motions of the Hénon and Logistic maps 

have been converted to a regular periodic motion by using 

back propagation NN algorithm. In [21], a similar 

algorithm has been developed to control the chaotic 

trajectory of the Ikeda function to equilibrium point. 

In this paper, an improved back propagation NN 

algorithm with adaptive learning rate has been proposed to 

control the chaotic trajectory of the 2 dimensional discrete 

chaotic Lozi map to fixed point and to a desired target 

trajectory. By changing the learning rates adaptively, the 

control scheme becomes less sensitive to noise and 

disturbance. In order to evaluate the performance of the 

proposed method, the discrete-time recursive backstepping 

control scheme [14] has been also implemented for 

comparison purpose. The simulation results show that the 

proposed method with adaptive learning rate outperforms 

the backstepping control scheme in the presence of noise 

and disturbance. 

 

 

2. Discrete time chaotic systems 
 

In this paper, Lozi map is studied as a two 

dimensional chaotic system. The map equation is given 

by: 
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where 22: RR   and it has a chaotic behavior with the 

parameter 7.1a , and 5.0b  [22] as shown in Fig. 1. In 

this case, the map in Eq. (1) has 2 fixed points as in Eq. (2) 

that satisfies **)( xxF  . 
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Fig. 1. The attractor of Lozi map. 

 

The goal of this study is to control the chaotic 

trajectory of Lozi map such that the chaotic trajectory 

converges to a fixed point or track any desired trajectory 

even in the presence of some noise and disturbance. 

 

 

3. Proposed control scheme 
 

The proposed control scheme is a back propagation 

neural network with adaptive learning rate consisting of 3 

layers of neurons (input layer, hidden layer and output 

layer). The input and output layers have 2 neurons 

corresponding to the 2 dimensional system given by Eq. 

(1). The number of hidden neurons affects the learning 

performance of the network and the determination of the 

optimal value has been still an open issue in the literature. 

In this study, it has been selected as 10 to achieve a 

reasonable performance. The topological structure of the 

network is shown in Fig. 2. 

 

 

Fig. 2. Neural network topological structure. 

 

Here, Nkykk ,.....2,1      ) ,(x   are the input patterns 

generated iteratively from Eq. (1). N  is the finite number 

of input patterns. )  ,( ii yx  are the output patterns that 

should have to be approximated to the fixed points, 

) ,( ** yx  or to a desired trajectory. 

The learning phase of the network has 2 steps. In the 

first step, the output of the network is calculated based on 

the network’s structure using previous weights and bias 

values from the first layer to the forward. The following 

calculations are done in this first step. 

The input to kth neuron of the hidden layer is denoted 

by KI  and is given by: 

 

KKkKk bwywx  21KI
                      (3) 

 

where 1Kw  and 2Kw  are the weights between the kth 

neuron of the hidden layer. Kb  is the bias value of the kth 

neuron in the hidden layer. By applying the tangent 

sigmoid activation function F  on KI , the output pKO  is 

obtained as: 
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The network outputs are given by, 
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In the second step, weights and bias values are 

updated adaptively based on the error values ix xxE
i

 * , 
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iy yyE
i

 *  from the last layer to the back. The 

adaptation rules for the weight and bias values between the 

output and hidden layers are calculated by the following 

equations. 
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In Eq. (8) and (9), second terms are calculated as: 
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where x  and y  are the adaptive learning rates which is 

varied according to the error functions and updated as:  
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This rule is applied until a desired error response, tE , 

is achieved. In a similar way, the adaptation rules for the 

weight and bias values between the hidden and input 

layers are calculated by the following equations: 
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In Eq. (14) and (15), second terms are calculated as, 
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where z  is also changed adaptively as: 
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With above updating rules, the output of the network 

follows the desired target trajectory or converges to a fixed 

point of the map given by Eq. (1). 

 

 

4. Backstepping control scheme 
 

Backstepping design based on the Lyapunov stability 

is a recursive procedure that breaks the full system into a 

sequence of small subsystems. Let the nonlinear system 

be: 
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where 
nRx  is the system state, Rz 1  is the scalar 

control input, f  and g  are nonlinear functions. The 

system in Eq. (21) can be augmented by the following 

equations [23]: 
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where Rzzz k ,..., 21  are the virtual control inputs and 

Ru  is the final control signal. In backstepping 

procedure, 1z  is defined as a virtual control input to 

stabilize the first equation. Then, 2z  is defined as a virtual 

control input for the second equation, and this goes so on. 

Therefore, the final control signal, u , for full order system 

is obtained systematically in n  steps [23].  

In this study, backstepping control scheme has been 

applied to the discrete-time chaotic map given by Eq. (1), 

which can be rearranged as: 
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The goal is to find )(ku  such that the output of the 

system, )(1 kx , asymptotically tracks the reference signal 

)(kr  as well as the stable or unstable fixed points of the 

system. Backstepping algorithm is applied to the system 

given by Eq. (23) step by step as follows. 

Let )()()( 11 krkxke   be the error between the 

output of the system and the reference signal. Then: 
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Let the second variable of Eq. (23), )(2 kx , be the 

virtual control input of Eq. (24) and the corresponding 

error variable )()()( 122 kkxke  . )(1 k  is the 

stabilizing function that satisfies the candidate Lyapunov 

function )()( 11 kekV  . The derivative of )(1 kV  yields: 
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If one chooses the stabilizing function as: 
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Eq. (25) and (24) becomes: 
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where 1c  is the design constant to be chosen later. With 

the stabilizing function given by Eq. (26), the error 

variable, )(2 ke , of the virtual control input is: 

 

)1()2(1

))()(()()()1(

)1()1()1(

1

211112

122







kxakr

kekecckukbxke

kkxke 

   

(29) 

 

Let the candidate Lyapunov function of the full order 

system based on the error variable of the virtual control 

input be: 

)(2)()( 212 kekVkV 
                    (30) 

 

If one chooses the control signal, )(ku , as: 
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Eq. (29) becomes: 
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and the derivative of Eq. (30) becomes: 
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By choosing design constants appropriately such that 

2/1  ,1 21  cc , Eq. (33) becomes negative definite. 

Thus, with the control signal given by Eq. (31), 

0)()()( 11  krkxke  as k  and )(1 kx  

asymptotically tracks the reference signal )(kr . A similar 

control law can be derived using above procedure in case 

of )(2 kx  is output. If 21  , cc  are chosen to be zero, 

deadbeat response is achieved such that )(1 ke  goes to 

zero from any initial state in n  (i.e. 2n  for 2 

dimensional system) sampling periods [14].   

 

 

5. Simulation results and discussion 
 

Numerical simulations are carried out to show the 

effectiveness of the proposed control method. In particular, 

a comparison with the backstepping control scheme is 

made to investigate the robustness of the proposed control 

method in the presence of noise and disturbance. 

In this study, 2 control objectives have been 

considered. The first objective is to stabilize the chaotic 

trajectory of Lozi map given by Eq. (1) to the fixed point 

22.0 ,45.0 *
2

*
2  yx . The second objective is to track the 

periodic sinusoidal signal )5/sin(5.0)( kkr  . In the 

proposed method, an initial point (0, 0) and its time series 

have been used to obtain a training set with 500 input 

patterns. The number of iteration for this training set is 10.  

Fig. 3-4 and Fig. 5-6 show the simulation results for 

the first and second objectives of the proposed method and 

backstepping control scheme, respectively. The control 

action has been switched on at 500k . 
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Fig. 3. Time series plot of the system states for the 

 proposed method. 
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Fig. 4. Tracking performance of the proposed  

method. 
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Fig. 5. Time series plot of the system states for the  

backstepping method. 
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Fig. 6. Tracking performance of the backstepping  

method. 

 

For backstepping control, design constants have been 

chosen as 021  cc . As can be seen from Fig. 5, with 

these constants, deadbeat response has been achieved such 

that the state variables x  and y  are stabilized to a fixed 

point in 2 time steps (i.e. 502k ) after control signal is 

applied.  

On the other hand, it can be seen from Fig. 3 that the 

state variables reach to fixed point after only 1 time step 

(i.e. 501k ) using the proposed control method for this 

training set.  

The number of neurons in hidden layer and the 

number of iteration in learning process affect the 

convergence performance of the proposed neural network. 

The convergence rate of the backstepping control scheme 

is dependent on the design constants [24]. For 

0  ,0 21  cc , the quickest convergence is achieved. 

However, sometimes it is not physically possible to 

produce a large control signal to achieve deadbeat control, 

so 1c  and 2c  need to be chosen appropriately. From Fig. 4 

and 6, it is obvious that the system state )(kx  (i.e. )(1 kx ) 

follows the reference signal )(kr  successfully using both 

methods. 

In order to show the robustness of the proposed 

method, a dynamic random noise, distributed on interval 

(–0.01, 0.01) is added to the state variables. In this case, 

the tracking performances of both methods have been 

investigated through Fig. 7.  
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Fig. 7. Tracking performance under noisy measurements 

 (a) proposed method (b) backstepping method. 

 

 

Fig. 7 shows that tracking error of the proposed 

method is much smaller than that of backstepping control. 

Moreover, in order to investigate the performance of the 

proposed method in the presence of an external 

disturbance, a disturbance with an amplitude of 0.01 is 

added to the system states at 800k  after control is 

switched on at 500k . In this case, the stabilization 

performances of both methods have been investigated 

through Fig. 8.   
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Fig. 7. Stabilization performance under an external disturbance 

applied (a) proposed method (b)  backstepping method. 

 

Here, it can be observed that the proposed method is 

more robust with respect to noise and disturbance than 

backstepping control if the training parameters are chosen 

properly. 

 

 

5. Conclusions 
 
In this paper, a neural network control based on the 

adaptive learning rates has been proposed to control the 

chaotic trajectories of the discrete-time chaotic systems. In 

order to compare the performance of the proposed method, 

a backstepping control scheme has been also developed 

and applied to the chaotic system. Simulation studies 

demonstrated that the proposed method can successfully 

stabilize the chaotic trajectory of the system to the fixed 

point and track the desired reference trajectory. It has been 

also shown that the proposed method is less sensitive to 

noise and disturbance and has a more robust property than 

backstepping control scheme if the neural network is 

trained properly with accurate training parameters. The 

proposed method can be applied to several circuits and 

systems studied in the literature and be used for both 

stabilization and tracking problems of chaotic systems. 
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